Extensions 1→N→G→Q→1 with N=Q8×C52 and Q=C2

Direct product G=N×Q with N=Q8×C52 and Q=C2
dρLabelID
Q8×C5×C10400Q8xC5xC10400,203

Semidirect products G=N:Q with N=Q8×C52 and Q=C2
extensionφ:Q→Out NdρLabelID
(Q8×C52)⋊1C2 = C5×Q8⋊D5φ: C2/C1C2 ⊆ Out Q8×C52804(Q8xC5^2):1C2400,89
(Q8×C52)⋊2C2 = C5210SD16φ: C2/C1C2 ⊆ Out Q8×C52200(Q8xC5^2):2C2400,105
(Q8×C52)⋊3C2 = C5×Q8×D5φ: C2/C1C2 ⊆ Out Q8×C52804(Q8xC5^2):3C2400,187
(Q8×C52)⋊4C2 = C5×Q82D5φ: C2/C1C2 ⊆ Out Q8×C52804(Q8xC5^2):4C2400,188
(Q8×C52)⋊5C2 = Q8×C5⋊D5φ: C2/C1C2 ⊆ Out Q8×C52200(Q8xC5^2):5C2400,197
(Q8×C52)⋊6C2 = C20.26D10φ: C2/C1C2 ⊆ Out Q8×C52200(Q8xC5^2):6C2400,198
(Q8×C52)⋊7C2 = SD16×C52φ: C2/C1C2 ⊆ Out Q8×C52200(Q8xC5^2):7C2400,114
(Q8×C52)⋊8C2 = C4○D4×C52φ: trivial image200(Q8xC5^2):8C2400,204

Non-split extensions G=N.Q with N=Q8×C52 and Q=C2
extensionφ:Q→Out NdρLabelID
(Q8×C52).1C2 = C5×C5⋊Q16φ: C2/C1C2 ⊆ Out Q8×C52804(Q8xC5^2).1C2400,90
(Q8×C52).2C2 = C527Q16φ: C2/C1C2 ⊆ Out Q8×C52400(Q8xC5^2).2C2400,106
(Q8×C52).3C2 = Q16×C52φ: C2/C1C2 ⊆ Out Q8×C52400(Q8xC5^2).3C2400,115

׿
×
𝔽